tion and threatens endangered species located on the base. The heaviest infestations occur in five different habitats, each requiring specific control methods: stream and river corridors, vernal pools, grasslands with endangered species, oak woodlands, and military use training areas. Management plans incorporating conventional control methods (herbicide applications, burning, and mowing) and releases of biological control agents are described for each habitat. Implementation of these plans was performed in three habitats in study areas of approximately 80–120 hectares. While the management plans were adjusted according to the management goal of the area (e.g., training, increase biodiversity, etc.), all shared the same objective: stop seed production and exhaust the seed bank. The basis of each plan was as follows: burn the area the first year to prevent seed production and encourage germination of the seed bank; apply herbicides the second year to prevent seed production and encourage growth of endemic grasses; during the third year, spot treat areas with yellow starthistle by hand removal or hand application of herbicide. Release biological control agents in untreated areas surrounding the study area to reduce the source of invading seed and to attack plants reinvading the treatment area. This control strategy was modified as needed for each habitat. After three years, the conventional control methods caused a substantial reduction of yellow starthistle, establishment of the biological control agents was successful and movement of the insects into the treatment areas was observed.

Computer-based information systems for accessing information on the management of terrestrial and aquatic invasive plant species

Sherry G. Whitaker,1 Michael J. Grodowitz,1 Lavon Jeffers,2 Sonya F. Lewis2 and Alfred F. Cofrancesco1

1 US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180-6199, USA
2 DynTel Corporation, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180-6199, USA

There are very many introduced and naturalized terrestrial and aquatic plant species that cause serious problems in many areas of the United States. The development of effective management strategies is directly dependent on access to pertinent and up-to-date information on plant identification, biology, ecology, and applicable management technologies. Unfortunately, because of the tremendous number of species, the collection and summarizing of such information can quickly become overwhelming. While traditional methods of technology transfer (including technical reports, scientific papers, oral presentations, posters, etc.) are adequate, more efficient access is needed. Toward this goal, two computer-based information/expert systems have been developed and recently updated that provide rapid and easy access to up-to-date information on various management and control methods available for particular plant species. These systems include the noxious and nuisance plant management information system (PMIS) and the aquatic plant information system (APIS). These systems are PC-based and operate under the Windows operating system, ensuring a high degree of portability for a wide variety of different computer configurations. The systems contain in-depth textual information as well as numerous photographic quality diagrams and images. Information covered includes plant biology, ecology, identification, and management options, and all operate using sophisticated programming algorithms that allow for easy identification of invasive species or available management options.