competition was 41 times stronger than interspecific competition. Exposure to weevils reduced the
intraspecific to interspecific competition ratio to near unity, indicating parity between the competing
species. Nonetheless, *N. bruchi* was more effective than *N. eichhorniae*, and the two combined were
only slightly better than *N. bruchi* alone. Similar results were obtained with ramets or flowers as yield
components. Nutrient limitation did not alter relative results, although all yield components were
reduced in lower nutrient environments. We conclude that important effects of these weevils act
through modification of water hyacinth competitive ability. This approach could allow assessment of
the value of proposed introductions by pre-empting the release of risky agents with little control value,
while increasing the valuation of those that cause seemingly trivial damage.

**Foreign explorations and preliminary host-range and field impact bioassays of two
promising candidates for the biological control of yellow starthistle in eastern Europe**

M. Cristofaro,1 L. Smith,2 M. Pitcairn,3 R. Hayat,4 S. Uygur,5 M. Yu. Dolgovskaya,6 S. Ya. Reznik,6 M. Volkovitsh,6 B. A.Korotyaev,6
A.Konstantinov,7 E. Colonelli,8 C. Tronci9 and F. Lecce9

1 ENEA, C.R. Casaccia, Rome, Italy
2 USDA–ARS, Albany, CA, USA
3 CDFA, Sacramento, CA, USA
4 Ataturk University, Erzurum, Turkey
5 Cukurova University, Adana, Turkey
6 Zoological Institute, 190034, St Petersburg, Russia
7 Systematic Entomology Laboratory, USDA, Washington, DC 20013-7012, USA
8 University of Rome “La Sapienza”, Rome, Italy
9 BBCA-onlus, Rome, Italy

In the search for biocontrol agents of yellow star thistle (*Centaurea solstitialis*; Asteraceae), surveys
have been carried out regularly in Turkey and southern Russia since 1990s. Yellow starthistle is
common in dry habitats, although some subspecies (sub. *carneola*) can be found in moist areas, e.g. the
Adana region. The largest populations and their associated natural enemies have been recorded in
central and eastern Turkey, especially in highland areas with a range of altitude from 1000 to 1900 m
above sea level. On the contrary, the weed is common in southern Russia (Krasnodar territory) just a
few metres above sea level. Although the weed has a large distribution in Europe and western Asia (all
of the Mediterranean Basin), eastern European countries like southern Russia and Turkey are real
“goldmines”: in addition to all the selected biocontrol agents, five new natural enemies have been
found in large numbers (flea beetles, weevils, tingids and eriophyid mites). In particular, two among
them are very promising: a root-borer weevil (*Ceratapion basicorne*) and a stem-borer flea beetle
(*Psylliodes* sp.), due to their restricted host range (according to our field and laboratory evaluations),
and their strong impact focused on early phenological stages of the target weed.