A Comparison Between the Flower-Head Insect Communities of South African *Berkheya* and European Cynareae

M.M. Clark¹

Zoology Department, University of Cape Town, Rondebosch 7700 South Africa

¹ Present address: Outapan Citrus Centre, P.O. Box 28, Nelspruit 1200 South Africa

Abstract

Plant morphological complexity is known to correlate, positively, with the number of insect herbivore species on individual plant species. Morphologically-similar plant species are therefore expected to support similar numbers of herbivore species. To test this hypothesis, the insect herbivore communities feeding on the flowerheads of six Berkheya species, indigenous to South Africa, were compared to communities previously sampled on Cynareae species in Europe. The composite genus Berkheya, in the tribe Arctoteae, is the same family. Also, both Berkheya and Cynareae have species that are weeds. The survey showed that Berkheya flowerheads were colonised by more herbivore species than flower-heads of Cynareae with a similar geographical range. Numbers of generalist species correlated positively with the geographical range of the host plant species, but the number of specialist species colonising flower-heads followed no pattern and could therefore not be predicted. The taxonomic composition of the herbivore species on Berkheya and Cynareae differed significantly, but two insect genera, Larinus and Urophora, colonised both groups. Larinus appears to have diversified in association with Berkheya in southern Africa as it has on Cynareae in Europe. Larinus species are recommended for the biological control of Berkheya weeds because of their specificity. Significant differences in guild structure between the two groups was also observed. These differences in the herbivore communities appear to be due to their exposure to different herbivore species pools, as a result of their geographical separation.

Introduction

Flower-heads of thistles in the tribe Cynareae (Compositae) have a characteristic morphology and are easily recognised. In southern Africa, the genus *Berkheya* Ehrh. (Compositae) has a remarkably similar morphology to the Cynareae, and its species are also commonly known as "thistles". *Berkheya* is part of a separate composite tribe, the Arctoteae, which is almost entirely endemic to Africa (Norlindh 1977). A few Cynareae species are native while some other species are introduced in sub-saharan Africa, but most species are restricted to the Palaearctic region (Zwölfer 1988).

The morphological similarity of these two "thistle" groups, which are separated geographically, provides an opportunity to test current ecological theory about the influence of plant architecture on insect herbivore diversity. Lawton & Schröder (1978) proposed that as plants increase in size and structural complexity, so they support increasingly more diverse insect herbivore communities. Several examples demonstrate this relationship (Lawton 1983). A corollary of this hypothesis is that morphologically similar plants should support similar numbers of insect herbivore species. The flower-heads of *Berkheya* thistles from southern Africa and of Cynareae thistles from Europe, which have similar geographical ranges, are therefore expected to support similar numbers of insect herbivore species.

Cynareae and *Berkheya* flower-heads, when closely examined, have some slight differences which may be used to differentiate between very similar species. However, on a larger scale they appear similar, with many structures characteristic of composite flower-heads in common (Fig. 1).

The herbivore communities of *Berkheya* and Cynareae were compared initially by determining the total number of herbivore species on each plant species so that the main similarities and differences between the communities could be identified. Then, to examine

the herbivore communities in more detail, their taxonomic composition and guild structure was compared.

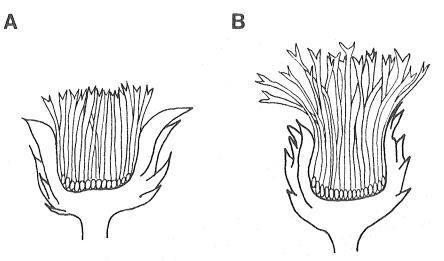


Figure 1. A generalised cross-section through the flower head of a *Berkheya* (A) and a *Cirsium* (B).

Materials and Methods

Mature flower-heads were collected from six Berkheya species found in the western and eastern Cape Province of South Africa: B. bipinnatifida (Harv.), B. decurrens (Thunb.), B. heterophylla (Thunb.), B. onobromoides (DC.), Berkheya sp and B. rigida (Thunb.). Flower-heads collected at each site were divided into two groups. One group was placed into an emergence box, the other group was frozen and dissected later. In the emergence boxes, adult insects, which had emerged from flower-heads, were attracted by light to a tube at one end of the box where they could be collected. The flower head dissections provided more specific information about feeding preferences.

Zwölfer (1965) collected accurate data on the herbivores of 59 Cynareae species during a comprehensive survey of Europe for potential biological control agents. Information about the flower head herbivores was extracted from this survey and used in the comparison with Berkheya insect communities.

Results and Discussion

Total Herbivore Species Numbers

Flower-heads of *Berkheya* have more herbivore species than Cynareae flower-heads which have been sampled a similar number of times (Fig. 2). Sampling frequency was used because no accurate information is available on the geographical range of the European Cynareae. According to Lawton & Schröder (1978), in their analysis of Zwölfer's (1965) data, in this example sampling frequency of the Cynareae does correlate with geographical range. Estimates of the area sampled for each Cynareae species, obtained from Zwölfer (1965), showed that those Cynareae sampled a similar number of times to the *Berkheya* species, had similar geographical ranges. The comparison of herbivore numbers could therefore be made using sampling frequency and not geographical range.

The larger number of herbivore species on *Berkheya* flower-heads is because there are more generalist species on these plants than on the Cynareae (Fig. 3). The number of generalist

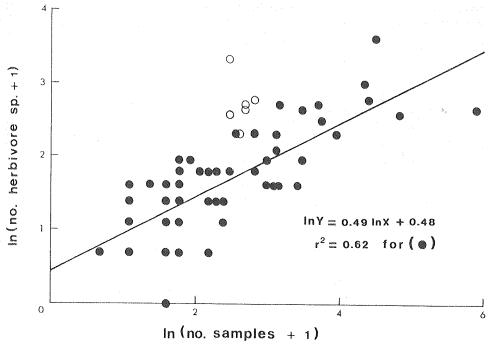


Figure 2. Relationship between number of sites sampled and number of insect herbivores recorded on various species of *Berkheya* (open circles) and Cynareae (closed circles).

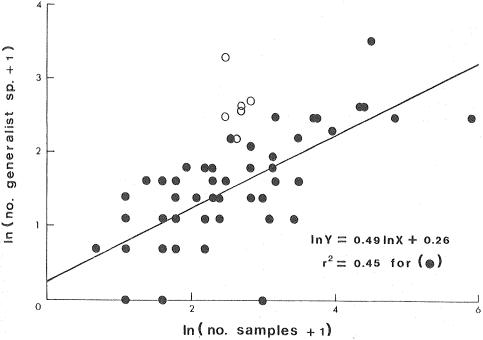


Figure 3. Relationship between the number of sites sampled and the number of generalist herbivore species recorded on various species of *Berkheya* (open circles) and Cynareae (closed circles).

species increased positively with the number of samples collected. Few specialist species attacked the flower-heads of either group and the number of species did not correlate with sampling frequency (Fig. 4). Each *Berkheya* species sampled had only one specialist herbivore species and numbers of specialist species on the Cynareae varied from nil to six.

Taxonomic Composition

There are major differences in the herbivore taxa found on *Berkheya* and on Cynareae (Table 1). No Hemiptera were recorded on Cynareae flower-heads, although they were found on the stems and leaves (Zwölfer 1965). No phytophagous Hymenoptera were found on *Berkheya* flower heads, but three species were recorded from six Cynareae species. In addition, the proportions of the taxa differed between plant genera within the Cynareae.

Table 1. Taxonomic composition of phytophagous insects that attack the flower-heads of Berkheya and selected genera of the Cynareae. Proportions are given in parentheses below the number of species.

Plant genus	Number of		species in	each	taxon
	Coleo-	Lepido- ptera	Diptera	Hemiptera	Hymen
	ptera				optera
Berkheya	10	18	7	14	0
(6 species)	(0.20)	(0.37)	(0.14)	(0.29)	(0)
Arctium	1	3	3	0	0
(3 species)	(0.14)	(0.43)	(0.43)	(0)	(0)
Carduus	7	7	10	0	0
(8 species)	(0.29)	(0.29)	(0.42)	(0)	(0)
Cirsium	7	7	12	0	0
(15 species)	(0.27)	(0.27)	(0.46)	(0)	(0)
Onopordum	5	2	2	0	0
(2 species)	(0.56)	(0.22)	(0.22)	(0)	(0)
Centaurea	7	13	12	0	2
(16 species)	(0.21)	(0.38)	(0.35)	(0)	(0.06)
Carlina	2	4	1	0	0
(3 species)	(0.29)	(0.57)	(0.14)	(0)	(0)
Echinops	1	0	0	0	0
(2 species)	(1)	(0)	(0)	(0)	(0)

Two genera, Larinus (Coleoptera: Curculionidae) and Urophora (Diptera: Tephritidae), occurred in both Berkheya and Cynareae flower-heads. The taxonomy of Larinus in southern Africa requires revision, but initial observations suggest that each of the six Berkheya species sampled is attacked by a different Larinus species. The close evolutionary association of Larinus with the Cynareae in Europe is already well documented (Zwölfer et al. 1971, Zwölfer 1988). It is therefore remarkable that, in addition to its association with the Cynareae, Larinus appears to have diversified in a similar association with Berkheya in southern Africa. A survey of other Berkheya species will show the extent of this association. Urophora agromyzella Bezzi is the only Urophora species found on the Berkheya species sampled. Records kept at the National Collection of Insects, Pretoria, indicate that U. agromyzella is a generalist and has been recorded from other distantly-related composite

species. These records also show that other Urophora species have been recorded from the Compositae, therefore this genus is not confined to Berkheya.

Guilds

Feeding preferences of insect herbivore species on Berkheya and on Cynareae flower-heads differed significantly (Fig. 5). Because no Hemiptera attack Cynareae flower heads they have no sap-sucking insects, a guild that comprises 18.2% of the herbivore species on Berkheya. The specialist gall-forming species did not occur on Berkheya and this may reflect the low number of specialist feeders on this genus.

Each Berkheya species has only one species of internal chewer (Larinus) and external chewers and suckers form a large proportion of the herbivore species on these plants (Fig. 5). Strong et al. (1984) suggested that endophagous miners and gall-formers colonise at a slower rate than external chewing and sucking species. If Strong et al. (1984) are correct, then the herbivore community on Berkheya may be younger, in evolutionary terms, than on Cynareae. The Arctoteae are closely related to the Cynareae and were previously included in this tribe (Norlindh 1977).

The Arctoteae are not as diversified as the Cynareae with about 194 species (Norlindh 1977) compared to about 2,175 species (Tutin et al. 1976) respectively, which may mean that the Arctoteae is a younger group. However, it may also mean that there are fewer specialist species on Berkheya because the pool of potential colonisers is smaller in the Arctoteae than in the Cynareae.

Conclusions

Herbivore communities of Berkheya and Cynareae flower heads differed significantly, in spite of the morphological similarity of the flower heads. However, the hypothesis that morphologically-similar flower-heads have similar insect herbivore communities does hold for herbivore communities within each group (Berkheya and Cynareae) which showed closer affinities. The main differences between these groups may be due to their geographical separation. The effect of the different numbers of plant species and the different habitats found in each area would have a major effect on the herbivore species pool available for colonisation.

Because the number of specialist species colonising flower-heads followed no pattern, it is not possible for biological control workers to predict specialist species numbers in advance to help with their planning. Larinus species appear to be the only good candidates for the biological control of Berkheya species that are weeds because of their close association with this plant genus.

Acknowledgements

I thank J.H. Hoffmann, V.C. Moran and J.K. Scott for their comments on the manuscript. This project was funded by the CSIR.

References

- Lawton, J.H. 1983. Plant architecture and the diversity of phytophagous insects. Ann. Rev. Ent. 28:23-9.
- Lawton, J.H. and D. Schröder. 1978. Some observations on the structure of phytophagous insect communities: the implications for biological control. Proc. IV Int. Symp. Biol. Contr. Weeds, 30 August 2 September 1976, Gainesville, Florida. Freeman, T.E. (ed.). Univ. Florida, Inst. of Food and Agric. Sci., Gainesville,
- Norlindh, T. 1977. Arctoteae systematic review. In: The Biology and Chemistry of the Compositae. II. Heywood, V.H., Harbourne, J.B. and Turner, B.L. (eds). Academic Press, London, pp. 943-59. Strong, D.R., J.H. Lawton and T.R.E. Southwood. 1984. Insects on Plants. Community patterns and Mechanism.
- Blackwell Scientific Publications, Oxford, 313 p.

Tutin, T.G., V.H. Heywood, N.A. Burgess, D.M. Moore, D.H. Valentine, S.M. Walters and D.A. Webb. (eds).

1976. Flora Europaea. Volume 4. Plantaginaceae to Compositae (and Rubiaceae). Cambridge
University Press. Cambridge p. 505.

University Press, Cambridge, p. 505.

Zwölfer, H. 1965. Preliminary list of phytophagous insects attacking wild Cynareae (Compositae) in Europe.

Techn Bull. Commonw. Inst. Biol. Contr. 6:81-154.

Zwölfer, H. 1988. Evolutionary and ecological relationships of the insect fauna of thistles. Ann. Rev. Ent. 33:103-22.

Zwölfer, H., K.E. Frick and L.A. Andres. 1971. A study of the host plant relationships of European members of the genus *Larinus* (Col.: Curculionidae). *Commonw Inst. Biol. Control Techn. Bull.* 13:97-143.

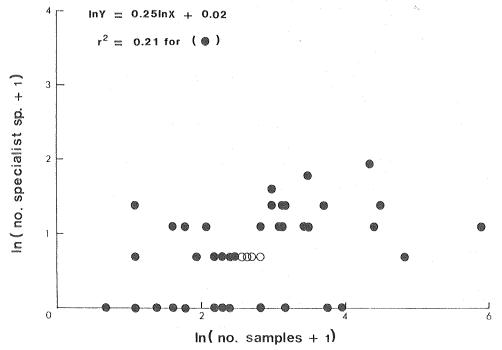


Figure 4. Relationship between the number of sites sampled and the number of specialist herbivore species recorded on various species of *Berkheya* (open circles) and Cynareae (closed circles).

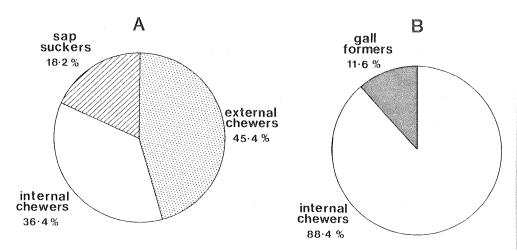


Figure 5. Pie diagrams showing the relative proportions of the major guilds of herbivorous insects that attack the flower-heads of (A) Berkheya and (B) Cynareae.

ሬ