is feasible, safe and enables the rapid isolation of potential biological control agents for a plant where both the identity and exact origins are uncertain. Further gardens, perhaps with fewer clones, should be planted in other regions of interest, such as regions of high diversity of *Rubus* species, for example southern England, or in regions of climatic similarity to southern Australia, for example southern Portugal.

Progress with the biological control program for Japanese knotweed

Richard H. Shaw and Djamila H. Djeddour

CABI Bioscience, UK Centre (Ascot) Silwood Park, Ascot, Berks, UK, SL5 7TA, UK

Japanese knotweed is a rhizomatic perennial weed introduced into the UK, mainland Europe and the USA as a desirable ornamental plant during the 19th century. It soon lost its charm and was recognized as the potential weed that it has since become. It is now considered the most pernicious weed in the UK with an awesome reputation for displacing native vegetation and even concrete during its exponential spread. Previous studies suggested that *Fallopia japonica* is a very good potential target for biological control given its lack of natural enemies and apparent clonal nature. Phase 1 of a biocontrol program for the UK and USA was initiated in 2000. It involved a literature review and set-up mission to Japan. This visit/survey revealed a plant under severe natural enemy pressure with representatives from the more promising groups of arthropod and fungal potential agents, including a ubiquitous and damaging rust species. The promising results from this phase, along with observations in quarantine on some of the natural enemies encountered, are presented. This project has a good chance of being the first successful biological control program against a weed in Europe, as long as the political obstacles can be successfully negotiated.

Biological control of privet in La Réunion: the story so far

Richard H. Shaw and Harry C. Evans

CABI Bioscience, UK Centre (Ascot) Silwood Park, Ascot, Berks, UK, SL5 7TA, UK.

Privet, Ligustrum robustum ssp. walkeri, is a major invasive weed in the Mascarenes, threatening what is left of the native forest. Its impact on the now depauperate island of Mauritius led to the initiation of a classical biocontrol program for the neighbouring French island of La Réunion where the plant had recently arrived and was spreading rapidly. Molecular techniques revealed that the area of origin was Sri Lanka, but the apparent lack of suitable co-evolved agents, and fungi in particular, led the team back along the path of speciation eventually arriving at the centre of diversity of the genus in China. Although a different suite of natural enemies was found in each region surveyed, the most promising fungal agents belong to the little-studied and notoriously challenging Dothideales. One member of this order, Thedgonia ligustrina, does attack the target and remains of interest. Fortunately, this was one of the first classical programs to combine from the outset both entomology and pathology and, although the two survey disciplines can seem incompatible at times, it does result in a more efficient and costeffective approach. Numerous arthropods were rejected on the grounds of specificity, but a moth from Sri Lanka, Epiplema albida, proved to be suitably specific for consideration as a biocontrol agent. Cut foliage starvation tests were carried out on 89 plant species, followed by live plant tests on indigenous non-target Oleaceae. They revealed a high level of physiological specificity. Further lab testing confirmed that this insect is capable of completing development on only one species of non-target plant found in La Réunion and is highly unlikely to lay eggs on any species other than the target in the field. The decision whether to release the moth has yet to be made.